Effective Jump-Pointer Prefetching for Linked Data Structures

Amir Roth and Gurindar S. Sohi
Computer Sciences Department
University of Wisconsin, Madison
{amir, sohi}@cs.wisc.edu

Abstract

Current techniquesfor prefetding linked data structures
(LDS) exploit the work availablein oneloop iteration or
recussive call to overlap pointer chasinglatency Jump-
pointers, which provide direct accessto non-adjacent
nodes,can be usedfor prefetding whenloop and recur-
siveprocedue bodiesare smalland do not havesuficient
work to overlap a long latency This paper describesa
framavork for jump-pointerprefetding (JPP) that sup-
ports four prefetding idioms: queue full, chain, androot
jumping and three implementationssoftwae-only hard-
ware-only and a coopeative softwae/hadware tech-
nigue On a suite of pointer intensiveprograms, jump-
pointer prefetding reducesmemorystall time by 72% for
softwae, 83%for coopeativeand55%for hardware, pro-
ducing speedups of 15%, 20% and 22%pectively

1 Introduction

Linked datastructuregLDS) arecommonin mary appli-

cations,andtheirimportances growing with the spreacbf

object-orientedprogramming. The popularity of LDS

stemsfrom their flexibility, not their performance. LDS

accesspftenreferredto aspointerchasing entailschains
of datadependentoadsthat serializeaddressgeneration
and memory access. In traversingan LDS, theseloads
often form the programs critical path. Consequently
whenthey missin thecachethey canseverelylimit paral-
lelism and dgrade performance.

Prefetchingis one way to hide LDS load lateny and
recover performance. Address prediction based tech-
niques can generate addressesin non-serial fashion,
prefetchnodesarbitrarily far aheadf their anticipatediuse
andtoleratelong latencies.However, LDS accesstreams
rarely display the high levels of arithmetic regularity
required to support accurate address prediction.

Recentlyproposedscheduling basedtechniqued11, 16]
prefetchnodesserially but attackissuedelaysthat aggra-
vate serializedlatenciesby issuingLDS loadsassoonas
theirinputsareready Schedulingnethodscanpre-calcu-
late LDS addresseaccuratelybut their paceis dictatedby
the critical path through the pointer chain. Scheduling
methodsare inadequatevhen the amountof work avail-
ablefor overlappingwith the critical chainis limited, due
to eithera tight loop or a slov memory Handlingthese
situations,which will worsen as the processor/memory
speedgap grows, requiresa mechanisnthat can address
and prefetch arbitrary LDS nodes.

To illustrate our point, Figure 1(a) shawvs a list traversal
loop (e.g.,for (I = list; I; I = I->next) ...) with thelong lateny

of the induction loads (instancesof | = I->next) exposed.
Schedulingnethodsidethislateng by issuingtheinduc-
tion loadearlyin theiteration(Figurel(b)). For shortiter-
ationsor long latencies(Figure 1(c)), an induction load
will stall the next iterationno matterhow early within its
own iterationit issues.For full efficiency, it mustbe over-
lapped with verk from multiple iterations.

(a) |loop iteration, |

=

— |
=1

(b) |

(c) |I

r— = — — A

O e

[] compute ¢t . jump-pointer prefetch
[] stal L LDS induction load

Figure 1. Hiding LDS load latency. (a) Exposed
inductionload latencycan be hiddenby (b) scheduling
it earlyin aniteration. (c) Thisappmoad is ineffective
if a singleiteration hasinsuficient work. (d) Jump-
pointers can le@erage the work of multiple itations.

We presenta methodfor overlappingLDS load lateng
with the work of multiple iterationsvia the structureduse
of jump-pointes. Jump-pointersare used strictly for
prefetching. Residingat someor all LDS nodes,they
point to nodesthat are likely to be accessedn the near
future, not onesthat are functionally adjacent. As shavn
in figure 1(d), jump-pointerprefetting (JPP)overcomes
the serial natureof LDS addressgenerationand obtains
the addresf an otherwisenon-adjacent.DS nodevia a
singlelow-lateng lookup. Thisin turn allows usto over-
lap the accesdatenciesof multiple nodesor equivalently
to overlap the latencof one node with multiple iterations.

Our generalframavork combinesjump-pointerprefetch-
ing with chained prefetching, which usesthe pointers
available in the original unmodifiedprogram. We shaw
thatjump-pointerprefetchingandchainedprefetchingcan
be combinedin differentwaysto createfour prefetting
idiomswhich we call queugjumping full jumping chain
jumping and root jumping Since both jump-pointer
prefetchingand chainedprefetchingcan be implemented
in eitherhardwareor software,eachidiom canbeinstanti-
atedin oneof threeimplementationssoftwae, hardware,

www.manaraa.com

and cooperative. The cooperatie schemehandlesjump-
pointerprefetchingin softwareandchainedprefetchingin
hardware.

Each idiom/implementationcombinationhas adwvantages
and drawvbacksthat malke it suitablefor certainkinds of
LDS traversals. We studya setof pointerintensive bench-
marksandattemptto isolatethe programfeatureshatbest
guide idiom and implementationselection. Our experi-
ments shav that software, cooperatte and hardware
prefetchingeliminatean averageof 72%,83% and55% of
the total memorystall time in theseprogramstranslating
into speedupsf 15%,20%,and22%respectiely. Thisis
a significant impreement @er other knan schemes.

This restof the paperis organizedasfollows. The next
section presentsour JPP framavork and a benchmark
characterization Thethreeimplementationsredescribed
in Section3 and evaluatedin Section4. The last sections
discuss related and futureork and our conclusions.

2 Jump-pointer Prefetching Framework

Our prefetchingframeavork can be describedn termsof

two building blocks: jump-pointer prefetches andchained

prefetches. Jump-pointers are pointersaddedto the pro-

gram’s datastructuredor prefetchingpurposesonly. We

saythata jump-pointerresidesin a home nodeandpoints
to a target node. Jump-pointer prefetches prefetchtarget

nodes using the jump-pointer at the home node. For

prefetchingto succeedthe tamget of a jump-pointermust
point to a nodethatis likely to be referencedsometime

after the correspondingiomenode. Chainedprefetches,
on the other hand, do not require jump-pointers,they

prefetchusingthe original pointersin the structure. Each
of thesetypesof prefetchprovides different benefitsand

hasdifferentassociategberformancecosts. Jump-pointer
prefetchescan prefetcharbitrary LDS nodes,hide arbi-

trary amounts of lateny and allow otherwise serial

prefetchedo executein parallel. However, jump-pointers
require storageand maintenanceimposingoverheadson

the program. Chainedprefetchedncur no explicit over-

headsandrequireno additionalmaintenancejut provide a

more limited amount of lategdolerance.

Jump-pointerprefetchesand chainedprefetchescan, to

somedegree,be tradedoff for oneanotherandcombined
to createefficient prefetchingsolutions. Our framework
comprisesfour idioms that representpoints along this
trade-of/combinationspectrum.On oneend,full jumping

usesjump-pointer prefetchesexclusively. At the othet

root jJumping usesfew jump-pointerprefetchesandrelies
heavily on chainedprefetching. Chain jumping is some-
wherein the middle. Finally, queue jumping is a special
casethat handlessimple structuresusing jump-pointer
prefetchesnly. Therestof thesectiondescribeshesedi-

omsand provides a benchmarkcharacterizatiorin which
high level programfeaturesareusedto guideidiom selec-
tion. However, we first provide a short overview of the
creation and use of jump-pointers.

2.1 Creating Jump-pointers Using a Queue

When prefetching,the distance(in dynamic nodestra-
versed)betweenthe home and target nodesof a jump-
pointershouldbeproportionaltosthestarget node access

latengy. Forinstancejf eachnodevisit containslO cycles
of work andnodeaccesgakes40 cycles,ajump-pointers
homenodeshouldbe four nodesaheadof its target node.
A shorterdistancewould allow only part of the target
accesdateny to be hidden. On the otherhand,usinga
distancethatis too long may causehe prefetchedlock to
be e&icted before it can be used.

Although ideal distancesmay vary from nodeto node,
such information is difficult to gather expressor use.
Insteadwe chooseafixedinterval |, usuallythemaximum
(or average)requireddistanceper node,andsetall jump-
pointers| nodesaheadof their targets. This is easily
accomplishedisinga queueof lengthl. OnLDS creation,
or first traversal, a queue maintains the last | node
addressesAs eachnew nodeis added(traversed)a jump-
pointeris createdwith thenodeatthe headof thequeueas
its home and the currentnode asits target. The current
nodeis then enqueuedt the tail of the queue,while the
home node at the head is rered.

The running example in this section usesthe routine
check patients waiting from the Olden benchmark[15]
health, a hierarchicahealth-caresystemsimulator Every
iteration, health visits a tree of hospitals bottom up.
Check _patients waiting scanghewaiting patientlist, pos-
sibly removing or addingsomepatients. Themainloop is
shavn in Figure2(a); theloadsin bold areresponsibldor
alargefractionof thecachemissesn theprogram. Figure

2(b) shavs jump-pointer creation using the queue method.

2.2 Four Prefetching Idioms

Jump-pointeprefetchingand chainedprefetchingcan be
combinedin various ways to form different prefetching
idioms. Thefirstidiom we presentgueue jumping, is not
really aconsciousombinationof theseblockshbut rathera
degeneratecase. Queuejumping is applied to simple
“backbone” structureswhich contain nodesof only one
type connectedn ary regular way, suchasa list, tree,or
graph. In queuejumping, jump-pointersare addedto
every structurenodeusingthe queuemethod andtheseare
usedto prefetchthe entire structure. The trade-ofs we
spole of comeinto play whenwe deal with “backbone-
and-ribs”structuresvhich containa primary pointerstruc-
turewith secondarystructuresat every primarynode. The
list usedby check patients waiting is such a structure,
with thelist nodesorming the“backbone” ,andthepatient
recordghe“ribs”. Evenin thesecasesqueugumpingcan
be used to prefetch only the “backbone”.

Full jumping, originally introducedby Luk and Mowry

[11] in a programmeicontrolled contet, prefetches
“backbone-and-ribs’structuresusing only jump-pointer
prefetches. Full jumping is shavn in Figure2(b). Each
nodeis augmenteadvith two jump-pointersj_list pointsto

the nodel iterations(hops)aheadandj_patient pointsto

thatnodes patientrecord. With an appropriatechoiceof

intenval, prefetch list->j_list hidesthe p = list->patient load

lateny and prefetch list->j_patient hides the lateny of

p->time. Our corventionfor prefetchstatementdollows

Luk andMowry’'s. Thatis, prefetch x means‘prefetchthe

addresdhatis the valueof x”. In software,this is a load

followed by a dependent non-binding prefetch.

Chain jumping applies jump-pointer prefetchesto the
“backbone”andchainedprefetchego the “ribs”, reducing
jump-pointeroverheads.At the sametime, chainjumping

www.manaraa.com

cantolerateasmuchlateng asafull queugumping solu-
tion by exploiting the factthata jump-pointercantolerate
anyamountof lateng if setwith asuitablechoiceof inter-
val. In our full jumping example,we maintainedjump-
pointersfor bothlist nodeand patientrecord,allowing the
prefetchego proceedn parallel. In chainjumpingshovn
in Figure2(c), we keepjust thelist nodejump-pointerand
prefetchingthe patientrecordthroughit, halvingthe num-
ber of jump-pointers (not to mention jump-pointer
updates).The price for this overheacefficiency is thatthe
two prefetchesmustnow executein series(prefetch list-
>j_list->patient blocks until prefetch list->j_list com-
pletes). Again, to fully hide the lateny of both loads
chainjumping mustusea longerinterval thanfull jump-
ing. For instance supposesachiterationin our example
containslO cyclesof computationwhile list->forward and
p->time eachtake 20 cyclesto complete. Full jumpinghas
only 20 cycles of lateng to cover and caninstall jump-

pointersat two nodeintervals. Chainjumpingincursthe
latencies in series and must use a-foonle interal.

Root jumping is most suitable for collectionsof small,
highly dynamicpointerstructures. It reliesalmostexclu-
sively on chainedprefetching. All jump-pointerdnstalled
in highly dynamicstructuressuchasthelists processethy
ched_patients_waitingeventuallybecomdnvalid. Keep-
ing jump-pointersupdatedis one way to deal with this
problem. However, continuousupdatesareexpensve and
updates on insertions/deletions only are comfemple-
ment. Root jumping avoids the update problem by
prefetchingin a way thatis transparento LDS mutation.
In root jumping, an entire LDS is prefetchedin chained
jumpingfashionusinga singlepointerto theroot. In Fig-
ure 2(d), &vig->j_vlg.hosp.waiting computeghe addresf
theroot of thelist for the next hospital. As the currentlist
is accessedthe next list is prefetchedusing the original
program pointers. On the negative side, root jumping

(@) while (list 1= NULL) {
p = list->patient;
if(..) §
removeList(&vlg->hosp.waiting, p);
addList(&vlg->hosp.assess, p); }
else p->time++;
list = list->forward; }

N W

(c) while (list!= NULL) {
prefetch list->j_list; Hjl
prefetch list->j_patient;
p = list->patient;
if (...) { ... } else p->time++;
list = list->forward; }

/ip

(e) j_list = &vig->j_vig->hosp.waiting;
while (list = NULL) {
prefetch j_list->patient;
prefetch j_list->forward,;
p = list->patient;
if (...) { ... } else p->time++;
list = list->forward;
j_list =j_list->forward; }

Hjlp
Hijll

- _ji _jli2 _
ilp%ii lepZ; i l ;i

(b) while (list I= NULL) {
p = list->patient;
if (...) { ... } else p->time++;
queue[queue_tail]->j_list = list;
queue[queue_tail] = list;
queue_tail = (queue_tail + 1) % INTERVAL;
list = list->forward; }

lljpc

(d) while (list l= NULL) {
prefetch list->j_list; il
p = list->patient;
if (...) { ... } else p->time++;
prefetch list->j_list->patient;
list = list->forward; }

Hilp

Legend:

I Program storage
[] Jump-pointer storage

— Pointer dereference

- — # Chained prefetch
Jump-pointer create
Jump-pointer prefetch

Figure 2. Jump-pointer prefetching idioms. (a) Unoptimizedched patients_waitingorocedue from the health
bendimark:theloadsin bold traveisea list of patientrecoids and incur manycace misseghat combineto serialize
theroutine (b) Jump-pointercreation: pointers are installed usingthe queuemethod. (c) In full jumping ead list
nodeis fitted with jump-pointes to a future nodeandits patientrecod. (d) Chainjumpingachievesthe sameeffect
without'maintaining'the'second jump-pointée) Root jumping can efett an entie list with a single jump-pointer

www.manaraa.com

Inst LDS Miss Prefetching
Bench Parameters Count Miss Overlap Data StructuresRuntime Behavior Idiom

bh 2K bodies 1788M 1.6% 0.12 | static octree rallt at each iteration queue
bisort 250,000 numbers | 565M 4.8% 0.26 | binary tree nodes flipped gqueue
em3d 2000 nodes 60M | 21.7% 1.62 | static list, pointer array at each node queue, chain
health 5 levels, 500 iters 162M | 23.3% 0.22 | static quadtree, dynamic lists at each nadtill, chain, root
mst 1024 nodes 199M 13.7% 0.32 | dynamiclist, statichashtableateachnode | queue, root
perimeter | 4K x 4K image 1570M 8.6% 0.53 | static quadtree gqueue
power 10,000 nodes 791M 0.4% 0.12 | static multivay tree, lists at each node | queue
treeadd 1M nodes 72M 3.4% 0.00 | static binary tree, gqueue
tsp 100,000 cities 328M 3.9% 0.76 | binary tree coverted to list gqueue
voronoi 60,000 points 317M 0.6% 0.05 | static binary tree queue

Table 1. Olden benchmarks. The statistical characterization shows the fraction of loads that are both LDSrelated and
miss in a 64KB L1 data cache (LDS miss) and the average degree of L1 miss overlapping. The structural
characterization shows types and runtime behaviors of data structures used. We combine information from both
analyses to select the appropriate prefetching idiom(s) for each benchmark.

magnifieschainedprefetch serializationeffects. Conse-
quently it is well suitedfor collectionsof LDS that are
both dynamiand short, like hash tableuzkets.

2.3 Selecting the Appropriate Idiom

With this idiomatic framework in place,we arefacedwith

the task of choosing(explicitly for softwareimplementa-
tions, implicitly for hardware)the appropriatadiom for a
given program. Someprogramsmay not needa jump-

pointer prefetchingsolution, they may not incur mary

LDS cachemissesor alternatvely have sufiicient parallel
work to overlap with thosemisses. Others,by virtue of

their algorithmic structure,cannotsupporta JPPimple-

mentation. The specificsetof programswe will studyis

the Olden pointerintensize benchmarksuite [15] which

haspreviously beenusedto studyboth hardwareandsoft-

wareprefetchingmechanism§l1, 16]. A summaryof the
benchmarks is sln in Table 1.

In consideringthe need for jump-pointerprefetching,we
measurethe fraction of loadsthat are both LDS related
and incur full or partialcachemisses.Equialently, thisis
the product of the overall miss rate and the fraction of
missesaccountedor by LDS loads. Otherkinds of loads
(arrays,stack,global) andloadsthat hit in the cachewill
notbeaffectedby JPP To obtainameasuref parallelism,
we countthe averagenumberof in-flight first level cache
missessampledat cachemisseshemseles. A low value
indicatesthat few cache missesare being overlapped.
Combinedwith a sizablemissratio, this impliesthatLDS
missesareserializingthe programandpointsout a signifi-
cant need for the parallelism enabled by.JPP

Tablel givesLDS missfractionandmissoverlapnumbers
for a 64KB, 32B line, 2-way associatie datacacheanda

superscalar out-of-order processorcore as describedin

Table 2. This preliminary analysisindicatesthat power

and voronoi may not require a JPPsolution as JPPcan
attackfewer than 1% of the loadsin theseprograms. In

addition, em3d appearsto have sufiicient parallelismto

overlap a significant number of LDS misses. A serial
LDS prefetching mechanism, like dependencebased
prefetching.[16],.will probably sfite to handle them.

Reagardlesof theneedfor it, JPPis notapplicablein every
situation. For instance)arge structureghatare extremely
dynamicanddatadependentraversals(tree searchesare
difficult to prefetcheven using jump-pointers. The last
partof Tablel detailsthe kinds of datastructuresusedin
eachbenchmark their runtime behaior, and the jump-
pointeridiom(s)wejudgedto beappropriatdor eachcase.

Bh, bisort, perimeter, power, treeadd, tsp andvoronoi all
use “backbone-only” structures,making queuejumping
theonly choice. Actually, we may notwantto explicitly
implementary idiom on bisort andtsp, astheseprograms
use structuresthat are both large and extremely volatile.
For these jump-pointertechniquegnay be both complec
to implementandinsuficiently effective to offsetthe over-
headsof ary software components. Becauseem3d and
health have “backbone-andibs” structureswe can use
chainandfull jumping for these. Finally, health and mst
use dynamic lists that suggestthe use of root jumping.
With this characterization mind, we proceedo the dis-
cussion andwaluation of our three implementations.

3 Implementations

Both of our JPPhuilding blocks:jump-pointerprefetching
and chained prefetching,can be implementedin either
hardwareor softwareyielding four possiblecombinations.
We presentthree: software-only, hardware-only, and a
cooperative schemen which jump-pointerprefetchingis
donein software and chainedprefetchingis handledin
hardware. Althoughit is possiblefor software and hard-
wareto cooperaten reversedroles,this final combination
maleslittle sensen termsof both compleity andperfor-
mance. So that we can introduce hardware techniques
gradually we describehethreeplausibleimplementations
in the following order: software, cooperatre, and finally
hardware.

3.1 Software

Software JPPimplementationsequireno speciahardvware
supportand,if implementedy hand,benefitdirectly from
the programmes high-level knowledgeof the code. He/

www.manaraa.com

shecan choosethe appropriateidiom or even constructa
specialpurposealgorithmthatexploits high-level program
invariants. On the downside,softwareis restrictedto use
only architectedresourcesa constraintthat manifestsin
three major ways. First, jump-pointerstorageconsumes
usermemoryandincreaseghe programs datafootprint.
Second,jump-pointermaintenanceand prefetchingcode
increasedothstaticprogramsizeanddynamicinstruction
count. Finally, softwarechainedprefetchesntroduceseri-
alization artifacts into the program.

The codeexamplesin Figure 2 arerepresentatie of soft-
wareprefetchingmplementationgor eachidiom. In soft-
ware,jump-pointercreationis simpleto implementandis
inexpensve in termsof executiontime andcachefootprint
overheads. Jump-pointercreationhandlesrecentlyrefer-
encednodesand, althoughit consumegachebandwidth,
rarely causeachemisses. Storageoverhead(measured
in terms of additional distinct first level cache blocks
accessed}y evenlessof a problem. Althoughevery jump-
pointer addsfour bytesto the programdataset, only the
em3d full jumping implementationshoved any memory
overheadandthenonly a 13% increasen distinct cache
blocks accessed. We attribute this phenomenorto the
implementationof memory allocators which, for effi-
cieng/ reasonsallocatesmall heapobjectsin only a few
fixedsizes. LDS nodesthatarenot of somepreferredsize
arepadded. Jump-pointerganbe storedin this would-be
paddingwith no cachefootprintincrease.Althoughmem-
ory overheadwill appearif non-paddingallocatorsare
used, it is difficult to estimatethe performanceimpact
without an empirical study

Software implementation®f jump-pointerprefetchesare
alsoinexpensve: of the two dependentoadsrequiredto

implementa prefetch,thefirst is likely to hit in the cache
and the secondis non-binding,completingon issue. In

stark contrast,however, chainedprefetcheshave bad exe-
cution characteristiceand mustbe implementedcarefully
to avoid performancepenalties. Sincethey traversethe
pointersof the original program,chainedprefetcheshave
the samedependenceanddependencehainsastheloads
for which they aretrying to prefetch. Furthermorethese
are typically long lateny dependencechains since
prefetchegypically accesslatathatis notin thecache.In

software, theselong lateny chainswill clog the out-of-
order engineunlesschainedprefetchesare spacedsuffi-

ciently farapart. This sortof schedulings difficult in situ-
ations where iterations have little work, an unfortunate
problemconsideringhatthesearepreciselythe situations
that force us to use jump-pointers in the first place.

We implementedheselecteddiom(s)for eachbenchmark
by hand. We first profiled the benchmarkgo determine
which LDS loads contrituted the majority of the cache
misses,and tracedtheseback to their sourcelevel state-
ments. We chosetheappropriaterefetchidiom by study-
ing the programsource,then insertedthe corresponding
code. The humancomponentof the entire processtypi-
cally took aboutone hour per benchmark. Only in one
casemst, did we exploit knowledgeof a programinvariant
to streamlinghe jump-pointercreationprocess.Giventhe
uniformity of jump-pointer creation and prefetching, it
seemslikely that jump-pointer prefetchingcan be auto-
matedin a compiler However, the structureresizingand
realignment needed to create jump-pointer storage
requiresguaranteesboutpointerarithmeticthat may be

difficult to obtainin a languagelike C. A more likely
placefor theseimplementationss a datastructurereposi-
tory such as the C++ Standareiiplate Library

3.2 Cooperative

Cooperatie JPPintroducesmodesthardware supportto
allow chainedprefetchingto beimplementedn hardware,
reducingboth the direct (instruction count) and indirect
(serialization artéct) costs of softare implementations.

The hardware componentof cooperatie JPPis nothing
more than the previously proposeddependence-based
prefetchingmechanism(DBP) [16]. DBP obseres an

executingprogramand dynamicallyidentifiesLDS loads
andtheir datadependenceelationshipseffectively isolat-

ing the “kernel” responsiblefor LDS traversal. To

prefetch, we speculatiely and aggressiely unroll the

“kernel” in dataflav fashion,alongsidethe original pro-

gram. Datais prefetchedvhenit is accessedby the “ker-

nel”. In effect, DBP allows the speculatre issueof LDS

loadsthat have yet to be scheduledor even seenby the

sequentiabrocessingcore. The centralDBP component
is a dependenceredictorthat representshe datadepen-
dencesamongLDS loads. CompletedLDS loadsaccess
this predictorto determinawhich, if ary, LDS loadscanbe

speculatiely issuedas prefetchesusing the just-loaded
valueasaninput address.Completedarrived) prefetches
are sentbackto the predictorto potentially launchother

prefetches. In this manner an entire LDS can be

prefetchedyjivenonly its root addresanda descriptionof

its traversalkernel. We proposea DBP implementation
that containstwo optimizations. To minimize resource
contention prefetchrequestsare queuedPRQ) until data
cacheportsareidle. To avoid cachepollution, prefetched
blocks are installed into a prefetchfter (PB).

With chainedprefetchingin hardware, software chained
prefetchescan be removed from the code, streamlining
chain and root jumping implementations. For instance,
considerthe software root jumping implementationfor
health from Figure2(e). A cooperatie versioneliminates
the statementgrefetch j_list->patient, prefetch j_list->for-
ward, j_list = j_list->forward. Not only doesthe software
versionexecutemoreinstructions,it potentially serializes
the programalongthe j_list = j_list->forward dependence.
The cooperatre counterpariof this dependencexecutes
in hardware and does not serialize the program.

To make a cooperatie implementationwork, software
prefetchesnustbe madeto trigger chainedprefetchesn

the hardware. Thesechained prefetchescorrespondto

speculatie instancef original programLDS loads.One
simpleway to achiese this communicationis to have the
dependencepredictor learn the relationships between
jump-pointerprefetchinstructionsand other LDS loads.
Oncetheseconnectionsare in place,the hardware auto-
matically issueschainedprefetchinstancesof ary loads
that dependon a jump-pointerprefetch. In addition to

eliminating software chainedprefetchesthis communica-
tion mechanismallows the remaining software jump-

pointer prefetchego be streamlined. Recall, a software
prefetchis implementedusing two dependentoads,the
secondof which is non-binding. By performingthe sec-
ond load in hardware, the corresponding software
sequenceas reducedto the first load which now can be
made non-binding.

www.manaraa.com

3.3 Hardware

HardwareJPPhasthe advantagethatit imposeso explicit
execution overheadon the program.However, hardware
JPPfaceschallengedn finding jump-pointerstorageand
may performpoorly whenhigh level programunderstand-
ing is needed to construct a prefetching solution.

For a hardware-onlyimplementationwe extendthe DBP
mechanismwith structuresthat direct jump-pointercre-
ation (storage)and prefetching(retrieval). Our particular
mechanismmplementschain jumping restrictingjump-
pointer prefetchingto recurrent“backbone” loads and
using DBP to automaticallychain prefetch “rib” loads.
This solutionautomaticallyprovidesqueugumpingwhere
appropriate.Thesetwo idiomsaresimpleto implementin
hardwareandhandlemostprograms. Full androot jump-
ing are not implementeddue to difficulties with finding
jump-pointerstorageanda relianceon high level program
understandingiespectiely. In this sectionwe explain the
processes of jump-pointer creation and reslie

For jump-pointer creation, we implement the queue
methodin hardware. Eachstatic load identified asbeing

recurrent(“backbone”) is associatedwith a queuethat

tracksits mostrecentinput addressesAddressqueuedor

the set of active recurrentloads are storedin the Jump
QueueTable (JQT). Whenaninstanceof arecurrenioad

commits,it accesseshe JQT and createsa jump-pointer
from the nodesitting at the headof the queueto the node
correspondingo its own input address. This processis

illustrated in Figure 3(b). list = list->forward createsa

jump-pointerfrom thenodevisitedfour hopsago,A, to the

currentnodeE. A requesfor storingthis jump-pointeris

generatedvhile the queueis updatedo reflectthe access
of the current node.

Jump-pointerretrieval and prefetchinitiation is a more
delicate processwhich we first explain at a high level

using the example in Figure 3(c). Wheneer an LDS

“backbone”load issues.the jump-pointerresiding at the
correspondinghome nodeis placed(magically for now)

into a specialnon-architectedocation called the Jump-
pointerRegister(JPR). A jump-pointerprefetchis created
usingaspeculatre instanceof theloadwith the JPRvalue
as its input. A completedjump-pointer prefetch may
access the predictor and gpachained prefetches.

The main issuein implementinghardware jump-pointers
is not which pointersto create,but rather where they
should be stored. Two storageoptions are available: a
non-architectedon-chip table and user memory Non-
architectedon-chip storageis attractve becauseof its
implementatiorsimplicity. However, its non-scalabilityis

a major problem. Prefetchinga 16K-nodelLDS requires
64KB of jump-pointerstoragewith potentiallymorestor-
agefor tags. It may be difficult to justify the construction
of a special purpose on-chip predictor of this size.
Anotherseriousproblemis the volatility of tablecontents,
both when traversing structureswith more nodesthan
table entries and acrosscontet switches. Our experi-
mentsshow that, with the exception of em3dwhich has
only 4000 nodesin its “backbone” data structure,most
benchmarkexperiencenegligible speedupgflessthan2%)
from a 16K entry on-chipump-pointer cabe

Althoughmorecomplicated storingjump-pointersn user
memoryis morepromising. Earlierwe obseredthatsoft-
ware jump-pointersare often storedin what otherwise
would beallocatorpadding. We believe thathardwarecan
and should use this samepadding. Padding storageis
available in quantities proportional to the number of
nodes. It provides a natural, taglessway of attaching
jump-pointersto their home nodesand guaranteedast
jump-pointeraccessincethe jump-pointeris broughtinto
the cachewhenits homenodeis referenced.Oneconcern
with this approachis that it createsa different memory
imagethantheonedictatedby the program. However, this
point is mitigatedsincethe storagein questionwould not
have otherwisebeenread. Previously, Martin et. al. [12]
usedthis argumentto justify cancellingwould-bestoresof
deadmemoryvalues. We usea similar agumentto justify
storing non-programalues in vould-be unused locations.

Corvincedof the advantage®f allocatorpaddingstorage,
we now needa safeand automaticway for detectingand
usingthe padding. The methodwe presentaddsinstruc-
tion setand memoryallocatorinterfaceextensionsto our

otherwisepure hardwarescheme.However, theseplay no

active partin eitherjump-pointercreationor prefetching.
We leare other possibilities for futurexploration.

Mostallocatorg(e.g.,GNU C library) allocatesmallmem-
ory chunksin sizesthatarestrictly powersof two; we sug-
gestsolidifying this corventionsothatit canbe assumed
by thecompiler Next, we addfour or five load variantsto
theinstructionset(call theselw8, lw16, etc.)andusethem
to implementrecurrentload accessesvith the particular
variantchosenbasedon the size of the referencedbject.
Specifically if thesizeis exactly a power of two suchthat
no paddingis available, then the urvaried load is used.
Otherwise,storagefor at leastone jump-pointeris avail-
ableattheendof theallocatedblock. To annotatets loca-
tion, we usethe load variantcorrespondingo the object
sizeroundedup to the next power of two. In thisway, an
annotatedecurrentioad can be usedto computea jump-
pointer addressin addition to the standard effective

mem
hier

@) P Data (b) “backbone” load input set jump-pointer (¢) “backbone” load input
| | rocessor cache | PB [list = list->forward |[E [Val. E [AtA | [list= list->forward | A | >
Dep PRQ l .
Pred C|B|A|D|->|C|B|E|D| prefetch

input

< R

JQT Ay

Jar fTail list = list->forward | E |

Figure 3. Hardware JPP. (a) Blodk diagramwith DBP specificpartsin light gray and JPP componentin dark gray.
(b) Installing jump-pointes: the JumpQueueTable (JQT) entry containsthe previousfour input addresseof theload
list = list->forward. Whena new instancecommitsjt createsa jump-pointerfromthe nodeat the queuetail, A, to the
currentnode E. It thenupdateghe JQT, advancingthe queue (¢) Jump-pointermprefetting: Asa “backbone” load
issues, the jump-pointer in the cesponding home node is placed in the JPR and used tchlaymefetd.

www.manaraa.com

address.This secondaddresscanbe usedto both storea
jump-pointerandto fill the JPRwith the appropriatenord
without performing ay explicit additional loads.

4 Evaluation

Our performanceevaluationproceedsn four steps. We
begin with a perbenchmarlcomparisorof the JPPidioms.
For eachbenchmarkthebestidiom is choserastherepre-
sentatve software/cooperatie solution. With software
andcooperatie schemedixed, we quantitatvely evaluate
all three JPPimplementationsfor each benchmarkand

In em3d theloadsthat would mostbenefitfrom prefetch-
ing accesgointerarraysstoredat every node. It is costly
to implementjump queuesand explicit jump-pointersfor

arraysonly in software and, consequentlyfull jumping
cannotbe used. In a cooperatre ervironment,however,

implementingthesearray prefetchess simpletr Conse-
quently an algorithm that performsonly explicit queue
jumpingin softwareandthe array prefetchego be imple-
mentedin the hardwareis the mosteffective methodhere.
Mst's short hashtable bucket chainsare ideal for a root
jumpingimplementation.Althoughhealths dynamiclists
suggestoot jumping, the lists aretoo long for this idiom

to be efective, chain jumping is the choice here.

comparethemto otherprefetchingschemes.Using a few
selected benchmarks and some extrapolated current
trendswe projectthe performancempactof JPPonfuture
architectures. Finally, we attemptto quantify both the
direct and implicit costs of JPP implementations.

To perform our experiments,we modified the Olden
benchmarkdy handto executeon a singleprocessqgrand
compiledthemfor the MIPS-I architecturausingthe GNU
GCC2.7.2compilerwith flags- @2 -finline-func-
ti ons. Many of thebenchmarkgontainlong allocation-
dominatednitialization phaseghatarenot acceleratedby
prefetching;we did not discountthesein ary way. Our
evaluationtool wasthe SimpleScalatiming simulator[1],
with micro-architecturaparameter@s shavn in Table 2.
We always report executiontime as a decompositionof
memoryaccesgime and computetime. We definecom-
putetime asexecutiontime assuminguniform singlecycle
datamemory accessbut with realistic cachebandwidth.
Computetime encapsulatestalls resulting from branch
mispredictions,instruction cachemisses,structural haz-
ardsandinsufficientmemorybandwidth. For eachbar, the
compute portion &s obtained using a second simulation.

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1
0.0

Normalized Execution Time

B Memory latency
0 Compute time

I

BSC BSC BSC BSC BSC BSC BSC
health health health em3d em3d mst mst
full chain root queue chain queue root

|Legend: B:Base S:Software JPP C: Cooperative JPP |

4.1 Comparing ldioms

We evaluatethe relative merits of the JPPidioms in the

contet of the software and cooperatie implementations.
We ignorehardware prefetchingfor now becausét imple-)) o) o
mentsonly one idiom. Resultsare shavn in Figure4. We believe thatin generalchainjumping, a combination
With chain and root jumping eachimplementedin only ~ Of jump-pointer prefetching for recurrent “backbone”
two benchmarks, we discuss the results on a case basis.l0adsand chainedprefetchingfor “rib” loadsis the most

Figure 4. Comparingidiom performance.Normalized
execution times of softwae and coopeative
implementations of the tbe pefetding idioms.

Out-of-Order Core 5 stage, 4 ay superscalaout-of-order pipeline with 64 instructions in-flight. Wrong patbaaition
modeled. Loads and stores issue via a 32 entry queue wityckedaad bypass. Loadsait for all

previous store addresses before issuing.
8K entry combined 10-bit history gshare and 2-bit predictors. 2K,ehtsy associatie BTB.

32KB, 32B lines, 2-\ay associate, 1 gcle access first\el instruction cache. 64KB, 32B lines, 2-
way associate, 1 gcle access, first¥el and data cache. A maximum of 8 outstanding data misges.
16-entry ITLB, 32-entry DTLB with 30ycle hardvare miss handling. Shared 512KB, 64B line, 4
way, 12 g/cle access second/ld cache. 703yale memory latenc 8B lusses to L2 cache and mairf
memory clockd at 1/2 and 1/4 processor frequemespectiely, with ¢ycle level utilization modeled.

4int ALU (1), 1int mult (3), 1int div (20),2 FPadd(2), 1 FPmult (4), 1 FPdiv (24), 2 load/storg(1)
Non-binding, complete on issue, and can initiate TLB miss handling.

Branch Prediction

Memory System

Functional Units (lateng

Software Prefetches
(where applicable)

Dependence Based
Prefetch Mechanism
(where applicable)

Jump-pointer Mechanisn 32 entry fully associatie jump queue table (JQT) with éid 8-address queues. One Jump-pointer
(where applicable) Rayister (JPR) allwing a single jump-pointer access pgcle.

Table 2. Simulated Mduine Configuration. Base simulator configation for all of our @periments.

256 entry 4-way associatie dependence predictor that alfotwo queries perycle. Prefetched
blocks are stored in a 2KB, 32B line, &yassociatie, 1 gcle access prefetclufier and subse-
guently installed into the cache if used. Prefetch requestowan 8 entry request queue.

www.manaraa.com

effectiveidiom. In puresoftware,it canachieve the same
effectasfull jumpinggivenanappropriatechoiceof inter-

val andcarefulscheduling. In a cooperatre implementa-
tion, it can take adwantage of the automatic chained
prefetchingperformedby the dependenchardware. Root

jumpingcanbethe mosteffective idiom in certainspecial-
ized casesin mst for instanceput is nota generalpurpose
technique. Chainjumpingis alsotheidiom implemented
by the hardwre mechanism.

4.2 Comparing Implementations

With the most efficient idioms selectedfor our software
andcooperatre implementationsye cannow evaluatethe

hardware schemealongsidethem. For addedinsight, we

compareour JPPimplementationsto DBP, a hardware
mechanisnthat doesnot usejump-pointers. The results
areshavn in Figure5. Again, we discussspecificcases
before making general obsations.

As our benchmarkcharacterizatiompredicted both power
and voronoi have very small memory lateny execution
components. Even the smallestcomputationoverheads
introducedby software prefetchingoverwhelmthe poten-
tial benefitand producean overall slovdown. In voronoi,
softwareandcooperatie prefetchingactuallyincrease the
total memory lateng, as uselessprefetchescontendfor
memoryresourcewith arraybasedcachemisses. Along
similar lines, we notedthatbisort andtsp areboth highly
dynamic structuresfor which ary jump-pointerscheme
will notremainvalid for long enoughto be useful. In fact,
explicit jump-pointerprefetchinghasan adwerseeffect on
bisort, as traversalorder changesrapidly and ary jump-
pointer prefetchesbecomepurely overhead. Software or
cooperatre prefetchingshould not be implementedfor
thesebenchmarks.In contrastwhile hardware JPPis use-
less, at theery least it does not deade performance.

The remaining programshave sizable memory lateny
componentsand benefit from software and cooperatre
JPPimplementations.For theseprogramsjn fact, JPPin

ary form provides superior performanceover prefetch
mechanismsthat do not possessthe ability to break
addresgyenerationserializationconstraints. If we disre-
gardbh, bisort, power, tsp andvoronoi, software,coopera-
tive andhardware JPPimproved performanceby averages
of 15%, 20% and 22%, respectrely while cutting the
memorylateny executioncomponentdy 72%, 83% and
55%. As we obsened earlier the performanceaeturnson
softwareandcooperatre schemesvould be even larger if
not for their associated computatiorechead.

In contrastwith JPR dependencdasedprefetchingpro-
vided only an 11% averageperformanceboostwhile cut-
ting only 29% of the total memory latengy component.
This is not surprising since our earlier characterization
indicated that most benchmarksare serialized by their
LDS load chains. Indeed,the one benchmarkwhich has
somenaturalparallelism,em3d, benefitsalmostas much
from the non-parallelizingdependencdasedprefetching
as it does from the use of jump-pointers.

The relationshipsamong the different JPP implementa-
tions are alsointeresting. One expectedtrendis thatthe
cooperatie implementationconsistentlyoutperformsthe
puresoftwareone,by asmuchas10%on benchmarkshat
usechainor root jumpinglike bh, mst, andhealth. These
improvements are due to the elimination of software
chainedprefetchesandtheir serializationartifacts. More

modestimprovements,1 to 2%, are obsenred for full and
queuejumping implementationsof bisort, tsp, treeadd,

and perimeter. Theseare dueto the streamlinedmple-

mentations of prefetches themsdy

Both softwareandcooperatie implementationsirefunda-
mentally more effective than their obsened speedups
wouldindicate. Jump-pointecreationimposeson-trivial
overheadthat degradesfrom the obsered impact. In the
health chainjumpingimplementationsfor instancejump-
pointer creationcreatesan a priori 12% slowdown that
mustbe overcomeby prefetchingbeforeary performance
gainsare obtained. If we correctfor this initial degrada-

1.1

10 o B
0.9 —
g 08 — - —
E
§ 07] o]
% 0.6 L - -
< 05 || || ||
N
= 04 || | |
S
E 03 — mory latency
0.2 == ute time
0.1 | - ||
0.0
BDSCH BDSCH BDSCH BDSCH BDSCH BDSCH BDSCH BDSCH BDSCH BDSCH
bh bisort em3d health mst perimeter power treeadd tsp VOoronoi
| Legend: B: Base D: DBP S: Software JPP C: Cooperative JPP H: Hardware JPP |

Figure 5. Comparing prefetching implementations. Execution times (normalized to an unoptimized execution) for
three JPP implementations: software, cooperative and hardware, and for dependence based prefetching.

www.manaraa.com

tion, we find that software JPPimproves performanceby
90%, not 68%, for this program and cooperatie JPP
achiezes130%ratherthan103%speedups.Thesearethe
gainswe would expectto seein a hardware only imple-
mentation, where jump-pointer creation is “free”.

In reality, however, the relationshipbetweerthe effective-

nessof hardware JPPand its software and cooperatie

counterpartss variable. While hardwareis moreeffective

on em3dandhealth the oppositeholdsfor mst perimeter
andto a lesserdggreetreeadd. The featurethat distin-

guishesthe first set of programsfrom the secondis the
numberof traversalsperformedon the dataset. Em3dand
healthperform 100 and500traversals respectiely, while

treeaddmalkes four passesand mstand perimetermake

oneeach. Hardware JPPtakesonefull traversalto install

jump-pointers,and so optimizesonly secondand subse-
gquentpassesver the data. The choicebetweencoopera-
tive and hardware implementations,betweenincurring

explicit jump-pointercreation overheadand leaving the

first passunoptimizedclearly depend®n thetotal number
of traversalsin the program. In health and em3d one
unoptimizedpassis negligible, on treeaddit forfeits one
quarterof thetotal savings, while for singlepassprograms
like perimeterandmst it makeshardwareJPPuseless. To

prefetch one-pass programs, jump-pointers must be

installedasthe LDS itself is built. For reasonsncluding

difficulties with dependenceletectionand potential mis-

matchesbetweencreationand traversal orders, this is a

task seemingly more suited for softve.

4.3 Comparing Bandwidth Requirements

Bandwidthconsumptioris anothemetricusedto evaluate
prefetching solutions. Ideally, prefetching should not
changethe overall numberof bytes moved betweenthe
first andsecondevel cachesandmemory A mechanism
thatachievesthis goalis perfectlyefficient sinceit simply
converts fetchesto prefetches. However, most mecha-
nismsprefetchsomeamountof uselesglatawhile unnec-
essarilyevicting usefulblocks. Figure6 shaws, for each
programandeachprefetchingmplementationthe number
of bytes moved betweenthe first and secondlevel data
cachesper dynamicinstructionin the original program.
We do not countthe instructionsaddedto software and
cooperatre implementationsas these would bias our
results in theirdvor.

Sometrendsare evident from theseresults. First, jump-
pointer prefetchingsolutionshave only a slightimpacton
bandwidthconsumptionjncreasingthe numberof bytes
maved by 3%, 6% and35%for software,cooperatie, and
hardware implementationsrespectrely. This compares
favorablywith the 25% overheadsncurredby dependence
basedprefetching. AmongthethreeJPPimplementations,
it is clear that increasingsoftware control over what is
prefetchedreducesprefetchwaste. The additionalband-
width consumedy hardware and cooperatre schemess
due largely to the dependencdasedprefetchingmecha-
nism, which prefetches “rib” structures in greedstfion.

4.4 Tolerating Longer Latencies

Jump-pointer prefetching provides good performance
gainson configurationgypical of today’s systems. How-

ever, architecturesf the near future will have different
characteristics. In this section, we extrapolate current
trendsto predictthe performanceof our benchmarksand
to explore the importance of JPP in future designs.

We consideregbrojectionsof severalcurrenttrendsinclud-

ing: wider issuepipelines,deepempipelines,greatermem-
ory bandwidthat all levels, and relatively longer main

memory latencies. We choseto disregard trends that
projectlarger on-chip secondlevel cacheswith the argu-

mentthatthe datasetsfor thesebenchmarkswill increase
as well. Our experimentsshav that pipeline enhance-
mentsand increasedandwidthdo not have a significant
impacton thesebenchmarksvhich, asa group,arehighly

serial. A relative increasein memory lateng, however,

translatesdirectly into performanceloss. In health for

instance a 4-fold increasen memorylateny producesa

2.5-fold increasan executiontime. The barsin Figure7

shav normalizedexecutiontimesfor health with different
memorylatencieq70 and280 processocycles)andvary-

ing jump-pointer prefetch inteals (8 and 16 nodes).

For benchmarksthat lack parallelism, longer memory
latenciesreduce the effectivenessof serial prefetching
schemedike dependencéasedprefetching,which com-
pressbut cannotflatten the memory dependenceraph.
For health theimpactof DBP dropsfrom 17%in the low

lateny caseto 9%. Ontheotherhand,JPPremainseffec-
tive as relatve memory latenciesgrow. The relative
impactof cooperatre JPPgrows from 50% to 65%, with

similar trends obseed for hardwre and softare JPP

3.5
3.0

2.5

2.0

1.5

1.0

0.5

Bytes Moved per Instruction

BDSCH

BDSCH
bh bisort

BDSCH
em3d

BDSCH

BDSCH
health mst

BDSCH
perimeter

BDSCH BDSCH BDSCH
power treeadd tsp

BDSCH
VOronoi

| Legend: B: Base D: DBP

S: Software JPP

C: Cooperative JPP H: Hardware JPP |

Figure 6. Comparing bandwidth requirements. Bytesof datamovedbetweerthefirst and secondevel data caches
divided by the number of instructions in the originalgrams.

www.manaraa.com

3.0
£ 25
|_
S 20 B Memory latency
= -
§1.5 0 Compute time
L
o
S 10
[+
£
S 05
0.0
BDSCH BDSCH BDSCH
MemLat=70 MemLat=280 MemLat=280
Interval=8 Interval=8 Interval=16
Legend: B: Base D: DBP S: Software JPP

C: Cooperative JPP H: Hardware JPP

Figure 7. Tolerating longer memory latencies.
Executiontimesfor health:thefirst group of bars uses
the baseconfiguation (70 cycle memorylatency),the
secondand third simulatelong memorylatency (280
cycles). In terms of prefething, the first two
configuations use a jump interval (the distance
betweera jump-pointers homeandtarget nodes)of 8,
the thid uses an interval of 16.

Not only doesJPPretainits effectivenessthe amountof

lateng it hides can actually be tuned using the jump-

pointerinterval parameter Increasingheinterval requires
morethanchanginga few lines of software,or increasing
thesizeof thequeuesn theJQT. Theprefetchbuffer must
be expandedto accommodaté¢he potentially longer resi-
denceof prefetchedblocks, and the numberof possible
outstandingprefetchrequestsmust be increased. How-

ever, with thesemodifications JPPcanbe usedto tolerate
even long latencies.

45 Other Costs

Amongthethreeimplementationsit appearshatcoopera-
tive and hardware JPP are more effective than software
solutions,with the mosteffective of thesetwo depending
on the particular benchmarkand prefetch idiom used.
Cooperatie JPP has the adwantagefor single-traersal
programs sincea hardware-onlysolution doesnot accel-
eratethe first passover a datastructure. Cooperatre JPP
also outperformshardware in programssuited for root

jumping sincethis idiom typically requiresknowledge of

high-level programinvariants. Hardware JPPhasthe edge
in prefetching multiple-passprogramsthat lend them-
selesto queueor chainjumping. Cooperatie JPPalso
has slightly lever efect on bandwidth consumption.

Performances not the only criterion by which to evaluate
JPPimplementations. Other important factorsare soft-
wareandhardwarecomponentompleities andcosts,and
ary requirementsuchas ISA changeghat may be met
with resistance. While software JPP loses the perfor-
mancebattle,it hasthe advantageof requiringonly a pro-
gramminginvestment. Hardware-only solutionsfree the
programmeifrom implementatiordetailsbut requirespe-
cial processormextensions. Although the implementation
we presentequiredSA changesnddeliversperformance
improvementsonly for'programsthatare recompiled we

believe thattheserequirementsanbe avoidedat the cost
of additional hardware compleity. Cooperatie JPP
seemdo have anoverall advantagevhenwe considemer-

formanceand costtogether It providesperformancehat

comparesfavorably with hardware JPR while requiring

fewer processorresourcesand less significant interface
changes. While cooperatie JPPdoesrequiresomepro-

grammereffort, it eliminatesthe mosttediousportion of

the software requirementschedulingchainedprefetches.
For now, cooperatie JPPseemdo be the bestchoicefor

combining high performancewith low implementation
cost. Thatmay changeassomeof the challengesassoci-
ated with hardare implementations are@rcome.

5 Related Work

While prefetching literature is abundant, prefetching
directedatthe specialrequirementaindchallenge®f LDS

is less extensve. Early work on improving the spatial
locality in LDS referencestreamsvasdonein the context

of LISP machines[5, 7]. This work aimedto increase
pagereferencalensityandusedruntimetechniquesmple-

mentedin eitherthe memoryallocatoror garbagecollec-
tor. Recently Seidl and Zorn [17] and Calderet. al. [2]

have shifted focus to cache-consciousllocation and
addedprofile feedbackto this process. Chilimbi et. al.

implementedcachespecifictechniquessuchas compres-
sionandline coloringfor LDS nodesin a memoryalloca-
tor [3] and a generationahgohage collector [4].

One of the earliestsoftware-controlledLDS prefetching
schemewas SFAID of Lipasti et. al. [10] which heuristi-
cally dereferencegbointerspassednto procedures. Luk

and Mowry [11] discussedseveral software techniques,
including compilerbased greedy prefetching, program-
mercontrolled history pointer prefetching (essentially
software full jumping), and data linearization. On the
hardwareside,MehrotraandHarrison[13, 8] introduceda

detectionand prefetchschemefor loadsthat, in isolation,
exhibited one of a numberof presetaccessatterns self

recurrencebeing one. Most recently Roth et. al. [16]

describeda dependencdasedmechanismthat dynami-
cally isolatesthe LDS accesskernel in a programand
prefetches by speculadlly pre-executing that &rnel.

Pugh introduced skiplists [14], a jump-pointerbased
sortedlist implementationwith searchand manipulation
statisticssimilar to thoseof a balancedsearchree. Jump-
pointershave beenusedto representset data structures
efficiently [6] andto parallelizesearcheandreductionson

lists [9]. Discussionsof maintainingrecursion-goiding

traversalthreadsin non-lineardatastructurecanbefound

in datastructurediterature[18]. As notedearlier Luk and

Mowry [11] suggestedhe useof programmetrcontrolled
jump-pointersfor prefetching. We are not aware of ary

implementations,actual or proposed, of hardware or

cooperatre jump-pointer prefetching.

6 Summary and Future Directions

In this paper we describethe generaltechniqueof jump-
pointer prefetching (JPP)for tolerating linked structure
(LDS) accesdateng. JPPis effective whenlimited work
is availablebetweersuccessie dependenaccessege.g.,a

www.manaraa.com

tight pointerchasingoop) to enableaggressie scheduling
techniquedo prefetcheffectively. We present.evaluate,
and comparethree JPPimplementations. Our technical
contritutions are summarized as folls:

* We presentlPPasa generalpurposeechniquefor tol-
erating serializedlatenciesthat result from LDS tra-
versal. By storing explicit jump-pointersto nodes
several hopsaway, JPPovercomeshe pointerchasing
problem. It is able to generateprefetch addresses
directly, ratherthanin a serialfashion,andis effective
evenin situationswherenot enoughwork is available
to hide latencies by scheduling.

* We presenttwo basic prefetchingtechniques;jump-
pointerprefetchingandchainedprefetchingwhich can
be combinedto form four prefetchingidioms: queue
full, chainandrootjumping. Drawing from their com-
ponent prefetching blocks, each idiom has certain
adwantagesand disadwantages. We provide a high-
level program characterizationthat can be used to
select a suitable idiom for avgin program.

* WedescribghreeJPPimplementationssoftware-only
hardware-only and cooperatie. For thoseprograms
with appreciablememory lateny componentsthese
implementations reduce overall obsened memory
lateny by 72%, 55%, and 83%, respectiely and
achieve speedups of 15%, 22%, and 20%.

Several directionsfor future work exist, beginning with a
systematistudyof the designspaceof hardwareJPP Our
simulatedimplementationuseda fixed queueinginterval

of 8 nodeswithoutregardto thetrade-ofs in lateng toler-

anceand predictive accurag. A more detailedstudy of

this spectrums neededwith a bettermechanisnadapting
theinterval on a caseby casebasis. We alsoassumeane
methodfor detectingand exploiting the unusedmemory
that padsallocatedblocks. Other methodsfor detecting
andusingthis padding,or maybesomeotherunusedpart
of memory may be better Our rationalefor usingmem-
ory to store jump-pointerswas predicatedon the sheer
numberof pointersthat would be needed. Advancesin

compressioror predictioncould make processostoragea
viable option. Finally, jump-pointerprefetchingmay be
generalizedo otherclasseof datastructureswith serial-
izedaccessdioms,like sparsanmatricesanddatabasérees.

Acknowledgements

The authorsthankMilo Martin, Marci McCoy, and Craig

Zilles for their commentson several drafts of this paper

and the anorymousrefereesfor their suggestions. This

work was supportedn partby NSF grant MIP-9505853,
by U.S. Army Intelligence Center and Fort Huachuca
under contract DABT63-95-C-0127 and ARPA order
D346, and by an equipmentdonationfrom Intel. Amir

Rothis alsosupportedby a Cooperatie Graduate~ellow-

shipfrom IBM. Theviews andconclusiongresentedre
thoseof the authorsand do not necessarilyrepresenthe

official policies or endorsementsgeither expressedor

implied, of the U.S. Army Intelligence Centerand Fort

Huachuca or the U.S. @ernment.

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

&)
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

D.C.BurgerandT.M. Austin. The SimpleScalaff ool Set,
Version2.0. TechnicalReportCS-TR-97-1342University
of Wisconsin-Madison, Jun. 1997.

B. Calder,C. Krintz, S. John,andT.M. Austin. CacheCon-
ciousDataPlacementlin Proc.8th Conference®nArchitec-
tural Supportfor ProgrammingLanguagesind Operating
Systemgpages 139-149, Oct. 1998.

T.M. Chilimbi, M.D. Hill, andJ.R.Larus.Cache-Conscious
Structure Layout. In Proc. SIGPLAN’99 Conferenceon
ProgrammingLanguageDesignand ImplementationMay
1999.

T.M. Chilimbi andJ.R.Larus.UsingGenerationaGarbage
Collectionto ImplementCacheConciousDataPlacement.
In Proc. International Symposiunon Memory Manage-
ment Oct. 1998.

C.J.Cheney.A nonrecursivelist compacting algorithm.
Communications of the ACM3(11):677-678, 1970.

T.H.CormenC.E.LeisersonandR.L. Rivest.Introduction
to Algorithms chapter22: DataStructuregor Disjoint Sets.
The MIT Press, 1990.

R. FenichelandJ. YochelsonA LISP garbagecollectorfor
virtual memorycomputersystemsCommunicationsf the
ACM, 12(11):611-612, 1969.

W.L. HarrisonandS. Mehrotra.Prefetchsystemapplicable
to complexmemoryaccessschemesUS Patent5694568,
Dec. 1997.

W.D. Hillis and G.L. Steele.Data Parallel Algorithms.
Communications of the ACNM9(12), Dec. 1986.

M.H. Lipasti, W.J. Schmidt,S.R.Kunkel,andR.R. Roedi-

ger.SPAID: SoftwarePrefetchingn PointerandCall Inten-

sive Environmentsin Proc. 28thInternationalSymposium
on Microarchitecturepages 231-236, Nov. 1995.

C-K. Luk andT.C.Mowry. CompilerBasedPrefetchindor
RecursiveDataStructuresin Proc. 7th InternationalCon-
ferenceon Architectural Supportfor ProgrammingLan-
guages and Operating Systermpages 222—233, Oct. 1996.

M.M. Martin, A. Roth,andC.N. Fischer.Exploiting Dead
ValueInformation.In Proc. 30th International Symposium
on Microarchitecturepages 125-135, Dec. 1997.

S.Mehrotraand L. Harrison. Examinationof a Memory
Access Classification Schemefor Pointer-Intensiveand
NumericProgram.n Proc. 10th InternationalConference
on Supercomputingages 133-139, May 1996.

W. Pugh.Skip lists: a probabilisticalternativeto balanced
trees.Communications of the AGN3(6):668, Jun. 1990.

A. RogersM. Carlisle,J. Reppy,andL. HendrenSupport-
ing Dynamic Data Structureson DistributedMemory Ma-

chines. ACM Transactionson ProgrammingLanguages
and Systemsviar. 1995.

A. Roth, A. Moshovos,andG.S. Sohi. Dependenc®ased
Prefetchingfor Linked Data Structuresln Proc. 8th Con-
ferenceon Architectural Supportfor ProgrammingLan-
guages and Operating Systermpages 115-126, Oct. 1998.

M.L. Seidl and B.G. Zorn. SegragatingHeap Objectshy
ReferencéehaviorandLifetime. In Proc. 8th Internation-
al Conferenceon Architectural Supportfor Programming
Languagesand Operating Systems pages 12—-23, Oct.
1998.

T.A. StandishData StructureTechniquesAddison Wes-
ley, 1980.

www.manaraa.com

